Self-assembling DNA Nanostructures for Patterned Molecular Assembly
نویسندگان
چکیده
The Chapter describes the use of DNA for molecular-scale self-assembly. DNA-nanostructures provide a versatile toolbox with which to organize nanoscale materials. We begin with a discussion of DNA-nanostructures, starting with the self-assembly of various building-blocks known as DNA tiles. We describe how these can be made to self-assemble into two and threedimensional lattices. We discuss various methods for the programmed assembly of patterned and/or shaped two and three-dimensional DNA-nanostructures, including their use to produce beautiful algorithmic assemblies displaying fractal design patterns. The resulting large DNAnanostructures provide multiple attachment sites within and between tiles for complex programmed structures and lead to diverse possibilities for scaffolding useful constructs and templating interesting chemistries. We describe methods for assembly of various biomolecules and metallic nanoparticles onto DNA-nanostructures, and also the assembly of various materials using DNA-nanostructures. Finally, we conclude the chapter with a discussion of various challenges.
منابع مشابه
DNA self-assembly for nanomedicine.
Self-assembling DNA nanostructures based on rationally designed DNA branch junction molecules has recently led to the construction of patterned supramolecular structures with increased complexities. An intrinsic value of DNA tiles and patterns lies in their utility as molecular pegboard for deterministic positioning of molecules or particles with accurate distance and architectural control. Thi...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملSelf-Assembled DNA Nanotubes
DNA, well-known as the predominant molecule for storage of genetic information in biology and biochemistry, has also been recognized as a useful building material in the field of nanotechnology. DNA provides basic building blocks for constructing functionalized nanostructures with four major features: molecular recognition, self-assembly, programmability, and predictable nanoscale geometry. The...
متن کاملDesign, Simulation, and Experimental Demonstration of Self-Assembled DNA Nanostructures and DNA Motors
Self-assembly is the spontaneous self-ordering of substructures into superstructures driven by the selective aÆnity of the substructures. DNA provides a molecular scale material for programmable self-assembly, using the selective aÆnity of pairs of DNA strands to form DNA nanostructures. DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for pr...
متن کاملMolecular Computations Using Self-Assembled DNA Nanostructures and Autonomous Motors
Self-assembly is the spontaneous self-ordering of substructures into superstructures driven by the selective affinity of the substructures. DNA provides a molecular scale material for programmable self-assembly, using the selective affinity of pairs of DNA strands to form DNA nanostructures. DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated fo...
متن کامل